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Abstract—This study explores the integration of hyperspec-
tral imaging (HSI) and RGB data for detecting, segmenting,
counting, and sizing fruit in agricultural orchards. We present
a novel framework combining spatial and spectral information
to enhance performance in complex agricultural environments
with occlusion, shadowing, and motion blur. Our proposed 1D-
ConvNet + SAM2 model demonstrates a 25% improvement in
recall over YOLOv8s, highlighting the advantages of incorporat-
ing spectral data for detecting partially occluded fruit.

Using DepthAnythingV2 (DAv2), we estimate metric depth to
localize fruit detections within a unified 3D coordinate system, en-
abling object tracking and unique fruit identification across video
frames. Despite challenges such as calibration dependencies and
computational overhead, the integration of depth and clustering
algorithms has achieved substantial progress in estimating fruit
counts.

For fruit sizing, segmentation masks as well as point clouds
derived from monocular depth estimation are used to estimate
dimensions, albeit with limitations in handling occlusions and
segmentation errors. Future work will address these limitations
by fine-tuning segmentation and depth estimation models, devel-
oping joint spectral-RGB encoders, and exploring better metric
depth calibration techniques.

This research emphasizes the potential of spatial-spectral
fusion in agricultural HSI applications, offering a public dataset
to encourage further advancements in this domain.

Index Terms—Hyperspectral image (HSI) classification

I. INTRODUCTION

Hyperspectral imaging (HSI) is an advanced imaging tech-
nique that captures a wide range of light wavelengths across
multiple narrow bands, offering significant advantages over
traditional imaging methods. Unlike conventional imaging,
which typically captures images using three primary colours
(red, green, and blue), HSI records detailed spectral infor-
mation across the electromagnetic spectrum, including visible
light, infrared, and sometimes even ultraviolet regions.

The core principles of HSI revolve around its high spectral
resolution and the concept of spectral signatures. These signa-
tures represent unique patterns that characterise how materials
reflect, absorb, or emit light at different wavelengths [43].
By leveraging these detailed spectral signatures, hyperspectral
sensors can accurately distinguish between materials, even
when they appear visually similar [1]. This capability enables
HSI to address a variety of challenges, including material

identification [30], [46], chemical composition detection [16],
medical diagnostics [21], cultural heritage preservation [33],
and monitoring environmental or biological changes [20]—ap-
plications that are difficult or impossible with standard imag-
ing techniques.

Despite its advantages, HSI classification faces several
challenges. High-dimensional spectral data, limited labelled
training samples, and significant spatial variability in spectral
signatures complicate accurate classification [8]. Additionally,
factors such as atmospheric disturbances, illumination varia-
tions, and instrument effects can degrade the quality of HSI
data, further hindering classification accuracy [4], [10]. As a
result, HSI classification remains a topic of ongoing research.

This paper presents a comparative analysis of traditional
machine learning methods and deep learning techniques,
specifically focusing on state-of-the-art approaches for image
classification. The primary goal is to explore the founda-
tional principles and recent advancements in spectral detection
benchmarks within HSI, specifically in the context of fruit
data. Whilst we have focused on the specific domain of an
orchard, the techniques and framework explored in this work
can be applied to any other HSI data domains easily. To that
end, our objectives are as follows:

1) Establish Benchmarks for Spectral Sensing Tech-
nology - define and develop standardised benchmarks
to assess the accuracy and effectiveness of spectral
sensing technologies used in HSI for fruit data analysis.
This will provide a clear framework for evaluating the
performance of various HSI systems in tasks such as
detecting, classifying, and segmenting fruit.

2) Highlight the Benefits of Spectral Sensing - explore
and describe the advantages of using spectral sensing
technologies in the context of fruit data analysis. This
includes improving the precision of fruit detection and
classification, enhancing the ability to track fruit growth,
and providing valuable insights for agricultural applica-
tions.

3) Identify Efficient Feature Recognition Methods - in-
vestigate more efficient or effective methods for feature
recognition by comparing the performance of spectral-
based methods with spatial-spectral-based techniques.



Fig. 1: System overview for a hyperspectral detection, segmentation, tracking and quantification framework. Components in
Blue are fully implemented, integrated and tested. Components in Red are beyond the scope of this work and their full
development and integration will be the scope of future work.

This will demonstrate the potential advantages of com-
bining spectral and spatial information for better detec-
tion and classification of fruit in various environments.

4) Conduct Empirical Experiments - perform a series of
empirical experiments to compare the performance of
algorithms used in fruit data analysis, including tasks
such as counting, tracking, and classification. These
experiments will be conducted using the same data and
evaluation framework to ensure fairness and consistency
in evaluating different methods.

5) Address Real-World Challenges - identify common
problems and propose solutions based on shared results
from machine learning approaches applied to fruit data.
This will help address challenges such as fruit occlusion,
varying lighting conditions, and various environmental
factors that can affect the accuracy of fruit detection and
classification systems.

6) Evaluate Performance Metrics - introduce and evalu-
ate performance metrics that accurately measure the ca-
pabilities of HSI systems. Key metrics such as precision,
recall, mean Average Precision (mAP), Intersection over
Union (IoU), and overall accuracy will be assessed for
detecting and classifying specific objects in a real-world
setting.

Figure 1 shows an overview of the detection, segmentation
and tracking system we implemented for orchard yield esti-
mation which is evaluated in this work.

II. RELATED WORKS

A. Evolution of Hyperspectral Imaging Classification Tech-
niques

HSI classification has evolved significantly, starting with
traditional machine learning methods such as k-Nearest Neigh-
bors (k-NN) [29], Support Vector Machines (SVM) [32] and
Random Forests (RF) [14]. These approaches addressed the
challenges of high-dimensional spectral data but were limited
by the complexity and volume of the data. Over time, advanced
techniques like multinomial logistic regression [25], and deep
learning methods—transformers [17], stacked autoencoders
(SAEs) [60], and Convolutional Neural Networks (ConvNets)
[24]—have gained traction. These newer methods leverage
spatial correlations between spectral pixels, improving clas-
sification performance when utilised effectively [18].

B. Spectral-Based and spatial-spectral Approaches

HSI classification can be broadly categorised into two
approaches: spectral-based and spatial-spectral-based methods.
Spectral-based methods focus on the spectral signatures of
individual pixels but often neglect spatial dependencies [19].
While they capture detailed spectral information, they may not
fully utilise the spatial correlations that are essential for higher
accuracy [44]. On the other hand, spatial-spectral methods
integrate both spectral and spatial features, leading to enhanced
classification results. Among these, ConvNets have shown
notable success due to their ability to capture both types of
information effectively, especially for complex tasks like fruit
classification in agriculture [48], [59].



C. Deep Learning and Recent Advances in HSI Classification

Recent advances in HSI classification have heavily utilised
deep learning to achieve superior results. A novel framework
was proposed to combine spectral and spatial features using
SAEs with Principal Component Analysis (PCA) and logistic
regression [8]. This approach demonstrated higher accuracy
compared to traditional methods like SVM and PCA clas-
sifiers. The study emphasised the importance of hierarchical
feature extraction for improved classification, though excessive
depth could reduce performance. Deep learning techniques
for HSI were reviewed highlighting the challenges of limited
labelled data and spectral differences from optical images
[2]. The study underscored the effectiveness of 2D and 3D
convolutional networks and recommended alternative strate-
gies like unsupervised learning and data augmentation. Li et
al. [26] categorised deep learning approaches into spectral-
feature, spatial-feature, and spatial-spectral-feature networks,
emphasising the need for larger annotated datasets or methods
like reinforcement learning to overcome data scarcity.

D. Hyperspectral Imaging in Fruit Quality Assessment

HSI has proven valuable for evaluating fruit maturity and
quality attributes, offering a non-destructive method for assess-
ing physical-chemical properties, maturity stages, and decay
detection. A review of HSI applications in fruit quality assess-
ment identified challenges in image processing, data mining,
and scanning parameters, highlighting the need to integrate
spectral and image data for improved practicality [51]. The
use of HSI for early decay detection in fruit like apples and
citrus has also been explored, with findings suggesting its
potential despite challenges such as large data sises, high
hardware costs, and redundant data, which limit its industrial
implementation [34].

E. Dimensionality Reduction and Quality Assessment Tech-
niques

Research into HSI’s ability to assess both external and
internal fruit quality has advocated for dimensionality reduc-
tion techniques like PCA and Linear Discriminant Analysis
(LDA) to simplify data processing, though the high costs of
equipment remain a significant barrier [27]. Distinguishing
banana maturity stages under varying temperatures has also
been demonstrated using HSI, confirming its ability to cor-
relate spectral data with attributes like total soluble solids
[39] -during ripening, starch molecules are converted to more
soluble sugars such as glucose, fructose, and sucrose. More-
over, studies summarising HSI’s capacity to evaluate textural,
biochemical, and safety features of fruit and vegetables have
underscored its non-destructive nature and potential for real-
time detection, while addressing challenges such as morpho-
logical calibration and computational demands [37].

F. Innovations in Fruit Ripeness, Maturity and Health Esti-
mation

Studies have expanded the applications of HSI for assessing
fruit maturity and ripeness. In one instance, classification of

blueberry maturity stages was achieved with band selection
techniques like pair-wise class discriminability and hierarchi-
cal dimensionality reduction, maintaining high classification
accuracy above 88% using classifiers such as k-NN, SVM,
and AdaBoost [55]. Citrus canker detection has also been
investigated using HSI and spectral information divergence,
achieving detection accuracies between 93.3% and 96.7% [62].
Additionally, persimmon ripeness stages have been classified
with 95.3% accuracy by applying feature wavelengths and
texture features extracted using a linear discriminant analysis
classifier [53]. Efforts to automate apple sorting systems have
integrated HSI with machine learning techniques for detect-
ing surface lesions, achieving high accuracy in identifying
pathogens and showcasing the effectiveness of combining HSI
with RGB imaging for enhanced fruit quality control [22].

G. Methods and Challenges in Fruit Counting

Accurate fruit counting is essential for yield estimation, and
many traditional and advanced methods have been explored
to achieve this goal. For example, a mango yield estimation
pipeline employed line-scan HSI on an unmanned vehicle,
achieving a determination coefficient of up to 0.83 compared
to RGB methods, showing a significant improvement, and
demonstrating HSI’s multifunctionality, including its potential
for disease detection [13]. Automated pineapple crown count-
ing systems have also shown promise, achieving 94.4% accu-
racy using UAV-captured RGB images and machine learning
classifiers like artificial neural networks [45]. Mangos on tree
canopies have been successfully counted using texture- and
shape-based methods, achieving counts within 16% of actual
numbers when imaging conditions were consistent [38].

H. Advances in Machine Learning for Fruit Counting

Research comparing ConvNet architectures for avocado,
lemon, and apple detection has shown that Faster R-CNN out-
performs single-shot detectors in accuracy but requires more
computational resources [49]. Additionally, ConvNets have
been used to count clustered apples, achieving 97% accuracy
by effectively managing occlusions and varying illumination
conditions [15]. A low-cost approach for counting green fruit
in orange trees has also been proposed, achieving a detection
error of only 5% under controlled conditions [31].

I. Hyperspectral Imaging for Fruit Detection and size Estima-
tion

Recent studies have extended the use of HSI to fruit detec-
tion and size estimation. A review of deep learning techniques
for these tasks highlighted efforts to address challenges like
canopy occlusion and lighting variations [35]. Assessments
of internal and external quality attributes in peaches have
achieved high accuracy in weight prediction and diameter
estimation using HSI, with a minimal margin of error [54].
Combining spectral and spatial data, another study demon-
strated accurate fruit size and count estimations, outperforming
manual methods [42].



J. Challenges in Yield Estimation Using Hyperspectral Imag-
ing

HSI offers significant promise for yield estimation due to its
ability to capture detailed spectral and spatial data. However,
several challenges persist that limit its scalability and practical
implementation. A key issue is the misclassification of young
leaves and overlapping fruit, which results from spectral simi-
larities and canopy occlusion, as noted in studies of early-stage
fruit yield estimation [36]. These misclassifications are further
exacerbated by environmental variables such as inconsistent
lighting, shadows, and field debris, which complicate data
acquisition under outdoor conditions.

The computational demands of processing high-dimensional
hyperspectral data also present a formidable challenge. Tradi-
tional approaches such as linear unmixing have been applied
successfully to estimate vegetation abundance and correlate
it to yield, achieving reasonable accuracy through multidate
imagery analysis. However, these methods struggle with non-
linear effects and require advanced preprocessing to mitigate
errors caused by mixed spectral signatures in heterogeneous
canopies [28].

Deep learning techniques, such as CNNs, have shown
promise for yield estimation by leveraging spectral and spatial
information. For example, a CNN-based model integrated
spectral and RGB data to predict corn yields with an accuracy
of 75.5%, outperforming one-dimensional or two-dimensional
models alone. However, the study highlighted the limitations
of small sample sises and the dependency on preprocessed
data to achieve optimal performance, underscoring the need for
larger datasets and robust preprocessing pipelines for model
generalisability [58].

In orchard settings, ground-based HSI has been used to
estimate mango yields with accuracy comparable to RGB-
based methods. However, while HSI offers additional capa-
bilities for detecting nuanced traits like disease and maturity,
its cost-effectiveness for standalone yield estimation remains
questionable unless integrated into systems addressing multi-
ple agronomic objectives. The pipeline’s reliance on labour-
intensive ground truthing and extensive image preprocessing
also constrains scalability in commercial applications [13].

Furthermore, integrating hyperspectral data with machine
vision systems to automate fruit detection across growth stages
has shown potential but has limitations; challenges include the
need for robust algorithms to handle variability in fruit appear-
ance, such as colour and sise, across different developmental
stages and environmental conditions. These systems also face
difficulties achieving real-time processing speeds suitable for
large-scale agricultural operations [41].

III. OVERVIEW

The remainder of this paper is organised into the following
sections:

V) Dataset preparation - we provide an overview of how
the dataset was collected and prepared as well as its
contents.

VI) Fruit detection and segmentation methodology - an
explanation of the methods of detecting fruit we have
developed using hyperspectral data and a comparative
study between them.

VII) Yield estimation through object tracking - an expla-
nation of our detection tracking algorithm and how this
can be used to estimate the total number of fruit in a
row of trees.

VIII) Fruit sizing - a method for estimating the distribution
of fruit sises in a row of trees.

IX) Conclusion - A discussion of the key contributions of
this work

X) Future Work - Areas to improve on in future to enhance
the utility of HSI workflows.

IV. DATASET PREPARATION

The dataset was captured using a Living Optics hyperspec-
tral camera [6], which provides detailed spectral data within
the visible to near-infrared (VIS-NIR) spectrum, covering
wavelengths from 440nm to 900nm. It contains standard RGB
images with dimensions of 2048 x 2432 x 3 and hyperspectral
data represented by 4384 spectral samples across 96 narrow
bands. When combined, we refer to the RGB + spectral data
as a hyperspectral (HS) image.

Developed in collaboration with the UK’s largest orchard
fruit producer, the dataset spans the growing season from
March to September and includes over 1,000 trees across
multiple fruit varieties. It supports key applications such as
fruit counting and sizing, segmentation, and potential disease
detection by offering insights into various stages of fruit
development.

The labelled portion of the dataset, comprising 44 unique
raw files linked to 439 frames, avoids data leakage by em-
ploying an 8:2 train-test split at the raw file level, ensuring
all frames from a single file are confined to either the training
or test set. This method guarantees robust evaluation while
maintaining data integrity.

Three distinct fruit classes are annotated: Royal Gala Apple,
Pear, and Cox Apple, with their distribution heavily skewed.
Specifically, the dataset contains 3,785 instances of Royal Gala
Apples, 2,523 instances of Pears, and only 73 instances of Cox
Apples, summing to a total of 6,381 labelled instances. This
imbalance posed challenges for model training, particularly for
the under-represented Cox Apple, requiring careful attention
to data balancing techniques during preprocessing.

Due to the lack of Cox Apple instances, these are only
present in the training set and not the test set.

We also mine the unlabelled areas of each scene for spectra
to form a background class. This further exacerbates the
dataset imbalance with a large amount of background data
compared to the number of foreground spectra. See section
section XI for more details.

Figure 2 shows the mean spectrum and standard deviation
of each class in the dataset. It can be seen that the mean
pear spectrum is very similar to the background. This is
unsurprising as the background is mostly green leaves and



Fig. 2: Mean spectrum of each class in the dataset. The shaded area represents the standard deviation of each class.

the pear variety is also green. The Royal Gala Apples show a
distinct bump at around channels 42 to 62, this is what gives
them their strong red colouring. The Cox Apples are clearly
yellow (and therefore unripe) base don their mean spectrum
which shows a broad response across much of the visible
spectrum.

A. Labelling spectra

Spectra were extracted from the HS images and each
provided with a class label dependant on the class label of
the segmentation mask at the location from which the spectral
sample was extracted.

This results in the creation of two arrays per data split (train
and test). The first array [N, 96] contains an ordered list of
spectral samples, the second array [N, 1] contains a list of
class numbers. The order of these two arrays is matched, such
that the spectrum at (e.g.) index 0 matches the class number
at index 0.

For spectra which do not lie within a labelled segmentation
mask (i.e. spectra which do not belong to one of the three
labelled object classes) a background class label is assign -
class number 0.

B. Data normalisation

Two normalisation steps are performed on the spectra in
order to maximise the performance of the spectral detection
algorithms.

1) Reflectance conversion:
The spectrum of the illuminant of each HS image is estimated

Fig. 3: A selection of spectra and the estimated scene illumi-
nant in radiance (left) and reflectance (right).

by taking the average spectrum of the brightest 5% of spectra
within the image. All spectra in the HS image are then divided
by this spectrum to convert them from radiance to (pseudo)
reflectance. This should reduce the effect of lighting changes
between scenes, thus reducing the intra-class variance and
making spectral classification easier. See Figure 3 for an
example of how this process affects some sample spectra.

2) Sum normalisation:
In order to reduce the effect of intensity variations between
HS images and across individual scenes due to changes in
camera settings (Gain, Exposure time) as well as shadowing,
we divide each spectrum by its sum along the channels axis.



Fig. 4: A selection of spectra and the estimated scene illu-
minant in reflectance (left) and sum normalised reflectance
(right).

This ensures that the area under the curve (AUC) for each
spectrum sums to one. This will further reduce intra-class
variance. See Figure 4 for an example of how this process
affects some sample spectra.

V. FRUIT DETECTION AND SEGMENTATION
METHODOLOGY

A. Experimental Setup

The image size used for these models varies based on the
data type, with the Spectral Segmentation Model utilizing the
full spectral resolution of 4384 spectral points. The Spatial-
Spectral model and YOLOv8s model processes images stan-
dardised to a size of 960x960 (cropped and half resolution).
This image size is due to a quirk of the Living Optics Camera
- spectral samples are only collected for the central (1920 x
1920) region of the image due to the dispersive nature of the
optics [6]. As such we only labelled this central region, so any
objects visible outside this area in the RGB scene view will
not have ground truth segmentation masks.

The experimental setup for this benchmark study focuses
on evaluating the performance of seven distinct models in
spectral detection tasks using hyperspectral and RGB data.
Each model employs a unique strategy, leveraging different
data characteristics to optimise detection accuracy and com-
putational efficiency. The models tested include two Spectral
detection models, four Spatial-Spectral segmentation models,
and an RGB segmentation model, each designed to address
specific challenges associated with hyperspectral and RGB
image analysis.

B. Spectral detection algorithms

1) Random Forest: The first Spectral detection model
utilises a RF algorithm as a baseline to classify hyperspectral
data, using only spectral information. We make use of the
scikit-learn ensemble and multiclass packages to provide the
RF algorithm, and training and inference methods. The RF
classifier is trained using the ‘OneVsRestClassifier’ object
from scikit-learn. This allows us to produce a classifier which
selects the most likely class for each spectrum it classifies.

We used the ‘RandomForestClassifier’ with custom hyper-
parameters: min samples leaf =2, min samples split=5, and
n estimators=400, in addition to exploring the effects of class
weighting to address data imbalance, as described in Section
??.

This leads to an over-fit RF as each tree is extended until
the final node is entirely pure (i.e. the training data is 100%
correctly classified). However, attempting to limit over-fitting
by altering the RF maximum depth leads to worse performance
on the test set. A simple explanation of this is that the
reflectance conversion and sum normalisation, as described in
the subsection IV-B section, have done their job and have lead
to the creation of highly separable classes.

2) 1D convolutional classifier: The second Spectral clas-
sification model utilises a 1D Convolutional Neural Network
(1D-ConvNet) to classify hyperspectral data.

In order to find a suitable architecture and set of hyper-
parameters for the 1D-ConvNet, a grid search is performed.
The basic skeleton of the architecture consists of a single 1D
convolution layer applied across the 96 channels of the input
spectra followed by a Relu activation function to introduce
non-linearity, batch normalization to remove the mean shift
introduced by the Relu activation and a 50% dropout layer [52]
to mitigate the risk of over-fitting, followed by a single fully
connected layer with 4 output neurons followed by a Sigmoid
and Softmax activations. During the grid search we add both
convolutional and fully connected layers to the skeleton to find
the optimal structure for the architecture.

The grid search is performed over 2 parameter sets:

1) the number and size of the convolutional layers for
between 1 and 4 convolution layers and sises [64, 128,
256, 512] neurons.

2) the number and size of the fully connected layers be-
tween 0 and 4 additional layers (not including the output
layer with 4 neurons). Both increasing layer widths and
decreasing layer widths are tested (e.g. [64, 128, 256,
512] and [512, 256, 128, 64]

This gives a total of 32 architectures to train and test.
The grid search is run using the ‘Background subsampling

1’ data balancing method as described below. Batch size is set
to 4384, an entire frames worth of spectra, and optimisation
is done using Adam [23] with the default parameters. An
early stopping patience of 100 epochs is applied, operating
on the validation F1 score of the model. The best architecture
is the model which achieves the highest validation F1 score.
We make the assumption that good any time performance
means good end performance [50] as is commonly assumed
in architecture searches.

The architecture consists of a single 1D convolution layer
that operates across the channels axis of the input spectra,
with sixty four neurons. After the convolution we apply
a ReLU activation and batch-normalisation. Following the
convolutional block, the network contains four fully connected
layers with sizes [512, 256, 128, 64] before the output layer.
The final output layer contains four neurons, with Sigmoid and



Softmax activation functions applied to produce the desired
class probabilities.

One of the major challenges with training the 1D-ConvNet
is the data imbalance in the orchard dataset. Imbalance comes
in two forms 1) the disparity between the amount of back-
ground spectra vs foreground spectra and 2) the disparity
between the number of spectra in each of the foreground
classes. To address this, we explore a variety of techniques.

1) None - the data is used as is with no attempt to account
for data imbalance

2) Class weighting - the loss is weighted inversely pro-
portional to the frequency of each class such that rare
classes are up-weighted and common classes are down-
weighted. I.e. getting a rare class wrong is more heavily
penalised than getting a common class wrong. Due
to the common class being seen more often, its total
contribution to the loss should (approximately) equal the
contribution of the rare class(es).

3) Background subsampling 1 - in each epoch a sub-
sample of the background data is selected such that the
number of background spectra is equal to the total num-
ber of foreground spectra, summed across all foreground
classes.

4) Background subsampling 2 - in each epoch a subsam-
ple of the background data is selected such that the
number of background spectra is equal to the number
of spectra in the rarest foreground class.

5) Data duplication 1 - The foreground spectra are dupli-
cated to match the number of spectra in the background
class.

6) Data duplication 2 - The spectra in each class are dupli-
cated to match the number of spectra in the background
class.

Full details of these methods can be found in section XI.
We retrain the best architecture found by the grid search

from scratch using each of the different data balancing meth-
ods described above. The results of this experiment can be
found in Table I. We use an early stopping patience of 500
epochs to ensure the models have fully converged.

The best data balancing method was ‘Background subsam-
pling 1’. ‡Whilst applying no data balancing, achieved 97%
accuracy, this is due to the imbalance of the dataset - the
classifier simply learned to always predict ‘background’ for
all spectra and failed to learn anything of use. This highlights
the importance of both data balancing and the use of metrics
beyond accuracy to validate machine learning models.

Further to this, the loss weighting approach also failed to
learn, predicting ‘background’ for all spectra. This suggests
that there is an issue with the capacity of the network to
accurately model the distribution of background spectra whilst
identifying the features of the foreground classes. Potentially
increasing the size of the model - which only has a single
convolution layer, might make the loss weighting approach
more viable, additionally decreasing the weighting of the
background class further may also help.

The use of data duplication worked to some extent, but the
model still heavily favoured the ‘background’ class for both
data duplication methods. The use of a duplication method
in conjunction with spectral augmentation may improve the
generalisation of the model. In particular, duplicating the
spectra of each foreground class (Data duplication 2) to match
the number of background spectra showed promising results.
A major drawback of any data duplication strategy is that it
increases training time.

We should note that the architecture was optimised using
the ‘Background subsampling 1’ data balancing method. So
it is unsurprising the the model performs well with this
data balancing method. Ideally, an architecture search across
all possible architectures and data balancing methods would
be run, however this is prohibitively expensive in terms of
computational costs and training time when running a grid
search. The use of a more sophisticated search algorithm could
facilitate the joint optimisation of more parameters over wider
ranges in a more timely manner but we will leave this for
future work.

In all following sections, the 1D-ConvNet is the model
trained using the Background subsampling 1 data balancing
method and architecture found from the grid search.

C. Spatial-spectral segmentation algorithms

The spatial-spectral approach leverages spectral classifiers
and spatial segmentors to enhance detection performance for
HSI. The methodology evaluates four distinct combinations of
spectral and spatial models:

1) RF + FastSAM
2) RF + SAM2
3) 1D-ConvNet + FastSAM
4) 1D-ConvNet + SAM2
The spatial-spectral segmentor is a two stage algorithm

which requires first classifying the spectra with a spectral
classifier, then over-segmenting the RGB image with a seg-
mentation algorithm. We then combine the locations of the
spectral classifications with the segmentation masks to find
the segmentation masks of objects of interest.

For spectral classification, both the RF and 1D-ConvNet
classifiers learn features directly from the spectral data. RF
achieves this through an ensemble of decision trees that col-
lectively identify patterns and relationships within the spectral
input. At the same time, the 1D-ConvNet employs a deep
learning architecture to extract hierarchical features from raw
spectral data. Although their approaches differ—RF using
decision tree ensembles and 1D-ConvNet leveraging convo-
lutional and fully-connected layers—both are fundamentally
data-driven, learning features based on the patterns in the
hyperspectral data.

For spatial segmentation, both FastSAM [61] and SAM2
[40] focus on processing spatial data. FastSAM prioritises
computational efficiency and speed, making it suitable for sce-
narios requiring rapid segmentation, while SAM2 emphasises
achieving higher accuracy by employing more computationally
expensive spatial segmentation techniques.



TABLE I: Results of different data balancing methods on the optimised 1D convolutional classifier architecture.

Balancing scheme Validation Accuracy
Background Pear Royal Gala Apple Cox Apple Total

None 1.0 0.0 0.0 N/A 0.97‡
Class weighting 1.0 0.0 0.0 N/A 0.97‡

Background subsampling 1 0.89 0.79 0.60 N/A 0.88
Background subsampling 2 0.16 0.59 0.54 N/A 0.18

Data duplication 1 0.99 0.20 0.06 N/A 0.97‡
Data duplication 2 0.96 0.57 0.23 N/A 0.94

The class of a segment predicted by either SAM2 or
FastSAM is determined as the most frequent (median) non-
background class as predicted by the set of N spectra within
the segment. The classification of each spectrum n ∈ N is the
class with the highest classification probability as predicted by
the spectral detector (either RF or 1D-ConvNet).

1) RGB detection and segmentation with a fine-tuned YOLO
model: The RGB Model is a fine-tuned YOLOv8s model,
specifically trained for segmentation tasks using the pre-
trained weights provided by Ultralytics. We then fine tuned
the model on the orchard dataset. We are then able to run the
model to predict bounding boxes.

The dataset was exported to a YOLOv5 segmentation format
by extracting the RGB scene view from each of the HS images
and converting the segmentation masks to a set of corner
coordinates of polygons which outline each of the labelled
objects in the dataset.

The RGB scene view and segmentation masks were cropped
to the central 1920x1920 region before exporting the data.
This was done for two reasons: 1) The labelled data only
contains segmentation masks for this region and 2) the Living
Optics Camera only provides spectral samples within this
region, so cropping makes comparing the different detection
and segmentation models easier and fairer.

Fine-tuning was performed using the Ultralytics fine-tuning
framework with the following hyperparameters:

1) Maximum training epochs: 10000
2) Early stopping patience: 200 epochs
3) Image dimensions: 960x960
4) Optimiser: Adam (with default parameters)
5) Dropout rate: 40
6) Default data augmentation parameters were used as

defined in the Ultralytics framework when calling
‘YOLO.train()’

VI. PERFORMANCE COMPARISON

This study utilises a comprehensive performance evaluation
framework to rigorously assess the capabilities of the various
models for both HSI and RGB detection and segmenta-
tion tasks. By focusing on spectral and spatial features, the
framework highlights the strengths and limitations of each
model, offering a nuanced understanding of their detection
performance. The metrics employed ensure a robust and
multidimensional analysis of the models’ performance.

To begin with, Accuracy is used as a fundamental measure,
indicating the overall correctness of predictions. While it

provides a general overview, more granular metrics such as
Precision and Recall are critical, particularly for datasets with
imbalanced class distributions. Precision assesses the model’s
ability to correctly identify positive instances while minimising
False-Positves, whereas Recall (equivalent to True Positive
Rate) measures its capability to detect all actual positives.
Together, these metrics offer a clearer view of detection
performance.

The F1 score is calculated to balance Precision and Recall,
whereas the F2 score places greater emphasis on Recall,
which is particularly important in scenarios where reducing
false negatives is prioritised. This distinction is crucial in
spectral detection tasks where undetected instances can lead
to significant performance gaps.

For localisation performance, the IoU metric is used in two
forms: Spectral IoU and Spatial IoU. Spectral IoU evaluates
how effectively the model detects spectral features. The Living
Optics Camera has a sparse spectral sampling mask consisting
of 4,384 points across the scene, thus spectral IoU computes
the area of this mask which has been predicted to be a
certain class vs the area of the ground truth mask which
belongs to that class. Spatial IoU, derived from predicted and
ground truth spatial masks (i.e. from the segmentation of the
dense RGB view from the Living Optics Camera as opposed
to the sparse spectral view), measures geometric accuracy
in localisation, providing a broader understanding of spatial
detection capabilities. To complement this, mAP is used to
summarise precision across multiple thresholds, offering a
robust measure of overall detection quality.

Additional metrics include G-Mean [11] and Matthews Cor-
relation Coefficient (MCC) [9]. G-Mean reflects the balance
between sensitivity and specificity, essential for achieving eq-
uitable performance across classes. MCC is a comprehensive
measure that accounts for all elements of the confusion matrix,
providing a robust metric for imbalanced datasets.

False-Positve Rate (FPR) and False Negative Rate (FNR) of-
fer valuable insights into error patterns, their complementarity
to Recall ensures a deeper understanding of misclassification
trends.

Although this study does not focus on real-time applications,
we report the estimated GFLOPs of the different algorithms.
This metric is indicative of the time required for each model
to generate predictions on a given inference platform which
remains a relevant factor in resource allocation and practical
model deployment.



GFLOPsRF ≈
∑n=N

n=0 Depthn × 96× 4384
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(1)

For the random forest we use the calculation found in
Equation 1 to estimate the GFLOPs per frame, where 96 is
the number of features in a spectrum and 4384 is the number
of spectra in a frame. As the Gini impurity splits are already
calculated at inference, the computational cost of the random
forest is dominated by the number of trees and their depths.

FLOPs for FastSam, YOLOv8, SAM2 and the 1D-ConvNet
are calculated using the flop counter from PyTorch.

A. Experimental Results

1) Spectral Results: From the spectral performance results
in Table II, the 1D-ConvNet significantly outperformed RF
across multiple metrics. It achieved markedly higher Accuracy,
Recall, and Spectral IoU, showcasing its robustness in identi-
fying true positives and capturing hyperspectral features. The
RF exhibited higher Precision and a lower FPR, reflecting its
conservative predictions with fewer false positives. However,
its high FNR and low F2 score indicate challenges in detecting
true positives, a critical limitation for this application where
we wish to get an accurate estimate of the number of fruit
which will be harvested.

Comparing Figure 5a and Figure 5b we can see that the
RF has a very high FNR, failing to detect many pear spectra,
whilst the 1D-ConvNet has a much higher FPR, incorrectly
detecting many background spectra and misassigning many
pear spectra as belonging to the Cox Apple class.

Individual FP spectral detections are not as impactful in
this workflow as FN detections. As the spectral sampling is
sparse and we will be performing a spatial segmentation on the
RGB image, FP spectral detections are unlikely to propagate
to downstream tasks. I.e. FP spectral detections are unlikely
to occur in sufficient density to produce FP spaital-spectral
detections.

The classification of many Pear spectra as Cox Apple by the
1D-ConvNet indicates that removal of the very limited amount
of Cox Apple spectra from the training data may improve
performance as the Cox Apple spectra have clearly acted as a
confuser for the Pear class.

One of the key challenges for training the spectral detec-
tor was class imbalance, especially between foreground and
background regions. Whilst custom balancing algorithms were
employed to address this for the 1D-ConvNet, incorporating
techniques such as background subsampling and foreground
duplication, the RF training loop did not support this workflow.
The RF was forced to rely on a loss weighting scheme
alone, while this helped mitigate some of the bias towards the
background class, it could not overcome the data imbalance
entirely. The loss weighting scheme was also applied to the
1D-ConvNet, where it also failed to achieve good results. The
RF did outperform the 1D-ConvNet for that particular setup
as it had a TPR that was non-zero - the 1D-ConvNet suffered
mode collapse due to data imbalance, learning to only predict
‘background’ for all spectra.

The high FNR of the RF is particularly bad when considered
in the context of its combination with an RGB segmentation
algorithm. Given that a confidence threshold on the spectral
classification of a segment is needed to determine the classi-
fication of the segment, having a high FNR for the spectral
classification, will lead to an even higher FNR rate for the
combined system. I.e. a single TP spectral classification is
unlikely to be enough to classify a segment as being a TP,
therefore the FNR is increased when the spectral and spatial
components are combined.

2) Spatial-Spectral Results: Evaluating the four spatial-
spectral segmentors and the spatial-only YOLOv8s model
revealed distinct strengths and limitations across different
approaches. Table III highlights these results, and Table IV
focuses on object-specific counting rates.

Among all model configurations, 1D-ConvNet + SAM2
achieved the best results across most metrics. YOLOv8s
achieved a strong Spatial IoU and the highest Precision,
underscoring its spatial segmentation strengths. However, its
lower performance in other metrics, such as Recall and F1
score, limit its use in downstream tasks. The high FNR of
YOLOv8s means that any yield estimate in terms of both
counting and sizing will be of negligble utility. More than
half of all fruit were missed by YOLOv8s.

The object-specific detection results in Table IV further
demonstrate the advantages of 1D-ConvNet + SAM2, with
counting rates of 0.4597 for Royal Gala Apple and 0.7926 for
Pear, surpassing all other configurations, including RF-based
models and YOLOv8s. These findings affirm that 1D-ConvNet
+ SAM2 excels in leveraging both spectral and spatial data for
precise instance counting. The superior counting performance
of 1D-ConvNet + SAM2 can be linked to its higher Recall and
F2 score, highlighting its effectiveness in detecting TPs. The
RF’s higher Precision comes at the cost of significantly lower
recall, leading to missed detections and reduced instance-
counting accuracy. These results emphasise the importance
of recall-focused metrics, such as the F2 score, in evaluating
models for tasks requiring accurate TP detection.

The baseline model, RF + SAM2, provided a crucial bench-
mark for spatial-spectral detection. However, the low TPR of
the RF means that downstream tasks will suffer due to many
missed detections.

In contrast, the 1D-ConvNet + SAM2 combination per-
formed better by directly learning spectral features from the
data. The use of categorical cross-entropy loss and batch
normalisation during training provided stability and a data
subsampling scheme to improve dataset balance, enabled
the 1D-ConvNet to surpass the baseline model across all
significant metrics. Additionally, by integrating SAM2 for
spatial segmentation, the combination effectively leveraged
both spectral and spatial features, offering a more robust
and consistent framework for spatial-spectral detection. This
demonstrated clear advantages over the RF + SAM2 baseline,
particularly in classifying spectral data.

The 1D-ConvNet + SAM2 combination emerged as the best
spatial-spectral detector in this study, achieving the highest



TABLE II: Experimental results of spectral classifiers

Metrics RF 1D-ConvNet
Accuracy 0.5229 0.9082
Precision 0.3059 0.2622
Recall 0.1569 0.7840
F1 score 0.1836 0.3653
F2 score 0.1637 0.5077
Spectral IoU 0.1170 0.2319
mAP@50 0.2266 0.3768
G-Mean 0.2694 0.8387
MCC 0.1936 0.3688
TNR 0.9949 0.5077
FNR 0.8431 0.2160
FPR 0.0051 0.0895
GFLOPs 1.05 0.09

TABLE III: Experimental results of spatial-spectral classifiers

Metrics RF + FastSAM RF + SAM2 1D-ConvNet + FastSAM 1D-ConvNet + SAM2 YOLOv8s
Accuracy 0.5585 0.5446 0.5391 0.9253 0.9372
Precision 0.4442 0.3920 0.2931 0.5785 0.7532
Recall 0.2893 0.2813 0.4388 0.7080 0.4586
F1 score 0.3171 0.2978 0.2211 0.5574 0.5561
F2 score 0.2947 0.2820 0.2442 0.5912 0.4918
Spatial IoU 0.2531 0.2315 0.1442 0.4122 0.4098
mAP@50 0.4572 0.4238 0.5600 0.7939 0.7535
G-Mean 0.3722 0.3622 0.3904 0.7910 0.6473
MCC 0.3321 0.3086 0.2322 0.5718 0.5721
TNR 0.9977 0.9971 0.8090 0.9283 0.9970
FNR 0.7107 0.7187 0.5612 0.2920 0.5414
FPR 0.0023 0.0029 0.1910 0.0717 0.0030
GFLOPS 7.33 5550.52 6.48 5549.56 6.28

TABLE IV: Counting rate

Labels RF + FastSAM RF + SAM2 1D-ConvNet + FastSAM 1D-ConvNet + SAM2 YOLOv8s
Royal Gala Apple 0.0879 0.0618 0.1545 0.4597 0.2541
Pear 0.4822 0.3933 0.5349 0.7926 0.4802

performance across key metrics. It recorded a Spatial IoU of
0.4122 and an mAP@50 of 0.7939, showcasing its ability to
integrate spectral and spatial features effectively.

While YOLOv8s achieved strong performance in spatial
segmentation with a Spatial IoU of 0.4098 and Precision
of 0.7532, its low Recall and high FNR make it unsuitable
for real-world applications with high levels of occlusion and
shadowing.

In contrast, 1D-ConvNet + SAM2 successfully balanced
spectral and spatial detection by leveraging deep learning
for spectral feature extraction and SAM2’s advanced spatial
segmentation. The high Recall of this combined model is a
good starting point for future detection workflows. However,
a significant drawback of this model is the vast computational
cost of SAM2.

The relatively poor performance of 1D-ConvNet + Fast-
SAM highlights the need to fine-tune the RGB segmentor
as YOLOv8s significantly out performed it despite having
the same core RGB segmentation model. The cause of the
difference is the fine-tuning of YOLOv8s. In future work,
we will explore fine-tuning FastSAM to attempt to achieve
a performance similar to that of the 1D-ConvNet + SAM2
model with a fraction of the computational resources. Given

that YOLOv8s performs better than 1D-ConvNet + SAM2 on
some metrics, fine-tuning FastSAM is likely to reveal the true
advantages of combing RGB and Spectral data. I.e. vastly
improved detection rates with only a very modest increase
in computational resource requirements.

In Figure 6a we can see that FastSAM has proposed many
incorrect segmentation masks unlike YOLOv8s in Figure 6e
which has correctly identified nearly all pears in the scene.
This difference is likely the results of the fine-tuing of the
YOLOv8s model but not the FastSAM model.

VII. YIELD ESTIMATION VIA OBJECT TRACKING

With the development of the spatial-spectral detector com-
plete, we move on to developing a tracking algorithm on top
of the best spatial-spectral detector.

Whilst it is trivial to count the number of detections per
frame, counting the unique detections across a sequence of
frames (a video) is more difficult. We are not guaranteed to
detect every object of interest on every frame and movement in
the scene, and of the camera relative to the scene, make iden-
tifying which objects have already been detected previously
difficult.



(a) RF (b) 1D-ConvNet

Fig. 5: Spectral points of detected masks.

We utilise a tracking algorithm to estimate which detections
are unique and which are repeat detections of the same
object(s).

A. Method

Each detected fruit will be assigned a set of 3D coordinates
relative to the position of the camera in the first frame. To do
this, we need to estimate the distance between the camera and
each detection. I.e. we need a method for estimating a metric
depth image.

To do this, we make use of DepthAnythingV2 (DAv2) [56],
[57], using the ‘vitl’ encoder and ‘VKitti 2’ metric depth
checkpoint [5], [12]. These weights are not ideal for the given
domain (an orchard) as VKitti 2 contains virtual urban scenes.
However, fine tuning DAv2 for the specific domain is beyond
the scope of this work.

We set the maximum output depth to 1 as this is just a scaler
and will calibrate the depth information in a later step. This
means that detections will initially be handled in ‘uncalibrated
units’ i.e. the unacalibrated units are proportional to meters but
an additional calibration step is needed to convert between the
two measurement systems.

After running DAv2 on the RGB image from the Living
Optics Camera, we convert the depth image to a point-cloud
in uncalibrated units using Equation 2 on each (X, Y) point
within the image.

The segmentation mask of each detected fruit is used to find
the coordinates of the centroid of the object i.e. we take the
mean Xucu, Yucu coordinate of the detection and the Zucu

coordinate at this position. Where Xucu is the X coordinate,

Yucu is the Y coordinate and Zucu is the Z coordinate of the
centroid of the segmentation mask in uncalibrated units.

Pucua = Zucu(
Ppa − ca

fa
) (2)

To convert from pixel units to uncalibrated units we use
Equation 2 along with the estimated intrinsic parameters of
the Living Optics Camera. Where Pucu is the coordinate along
axis a (X or Y) in uncalibrated units, Ppa ∈ [xp, yp] and fa is
the focal length in pixels for axis a and ca is the principle point
along axis a. The principal point for each axis is assumed to
be the central coordinate of the image i.e. (2048, 2432)/2 =
(1024, 1216).

fa =
fma

PPx
(3)

Equation 3 demonstrates the conversion from the focal
length of each axis in metres fma to pixels using the pixel
pitch (sise of a pixel), PPx in metres. PPx = 2.76e−6m for
the Living Optics Camera and the focal length in the orchard
dataset is 8.5mm for both the X and Y axis.

In order to convert from uncalibrated units to meters, we
make use of a reference object of known size which is
manually labelled in two scenes. The calibration object used
were the black squares of a printed chequerboard pattern as
shown in Figure 7.

Each black square has a side length 2.5cm, thus we can
measure the size of each square in uncalibrated units by
extracting their point-clouds using their labelled segmentation
masks and use this to derive a calibration factor for converting
from uncalibrated units to meters.



(a) RF + FastSAM (b) RF + SAM2 (c) 1D-ConvNet + FastSAM

(d) 1D-ConvNet + SAM2 (e) YOLOv8s

Fig. 6: Bounding boxes of detected masks.

Fig. 7: The average size of the black squares is used to estimate the conversion from uncalibrated units to meters.



Lm = Lucu ∗ J (4)

Equation 4 shows how to convert a length L in uncali-
brated units to meters using the conversion factor J . J =
0.025/Mean(Lsquare−ucu). In practice, we found that cali-
brating the X and Y axes separately gave better results. This
is likely due to the depth image (and RGB image it was derived
from) being rectangular, thus we have higher resolution along
the X axis than the Y axis. We use Jx = 15.524 and
Jy = 15.863).

There are several limitations to this approach to producing
and calibrating a point-cloud with this method.

1) DAv2 is computationally heavy.
2) DAv2 gives different uncalibrated depth measurements

depending on the resolution of the input image.
3) The need for a calibration object to be present in the

scene reduces the generalisability of this approach.
4) There is no guarantee that the calibration factor, J , is

valid for scenes where it was not explicitly calculated.
5) There is no guarantee that the calibration factor, J , is

valid at depths other than the depth of the calibration
object - DAv2 may produce non-linear depth values.

6) We have not implemented an automatic way of detecting
the calibration object, thus this process can only be run
offline, with human intervention.

In [57] they make use of a single value for J , which
is dependant on the maximum depth of the dataset being
evaluated. However, this approach does not generalise to real-
world data as shown by our need to derive our own, axis-
dependant, calibration factors. However, this does imply that
DAv2 should provide linearly varying depth values, thus points
4 and 5 are of less concern than the other issues.

In future, work we will explore how to improve the perfor-
mance of the monocular depth algorithm in terms of inference
speed, depth accuracy, calibration accuracy and calibration
method.

In order to unify the coordinate system of all detections,
we use Iterative Closest Point (ICP) [3] with a ‘Point-
ToPlane’ transformation [7] to compute the transformation
between framen and framen−1 which can be used to
transform the coordinates of each detection in framen
back to the coordinate system of framen−1. We make use
of the ICP implementation provided by Open3D. We use
maxcorrespondencedistance = 5000, relativefitness =
1e − 07, relativermse = 1e − 07 and maxiterations = 50
as hyperparameters of the ICP algorithm. A more careful
selection of these parameters may lead to better results in the
later steps of fruit counting.

TN→0 =

n=N∏
n=0

Tn→n−1 (5)

By keeping track of the total transform between framen and
frame0, all detections can be localised relative to the start

position of the camera using Equation 5 where Tn→n−1 is the
transform between framen and framen−1.

We use a homogeneous definition of the coordinates system
thus Tn→n−1 will be defined as:

T =


R11 R12 R13 tx
R21 R22 R23 ty
R31 R32 R33 tz
0 0 0 1


The 4×4 homogeneous transformation matrix consists of a

3× 3 rotation matrix (Rij) in the top-left, a translation vector
(tx, ty, tz) in the top-right, and a bottom row of [0, 0, 0, 1] to
maintain homogeneity.

Fig. 8: Centroids of the calibration squares in the unified
coordinate system. Colour and number represent the frame
number in which the squares were imaged.

c0 = Tn→0 × cn (6)

Application of Equation 6 to the centroid cn ∈ Cn of each
detection in frame n, maps it back to the coordinate system
of the first image frame, c0 ∈ C0.

From figure Figure 8, we can see that there is significant
drift in the unified coordinate system introduced between
frames. This is likely due to improper selection of hyperpa-
rameters for the ICP algorithm as previously mention. The
multiplication in Equation 5, means that any error in the
estimated transform between two frames will propagate and
compound over time.

Once all detections have been localised into a single coor-
dinate system, we can then group duplicate detections using
agglomerative clustering to form a linkage matrix followed by
running an ‘fcluster’ algorithm to return the flattened clusters
from the hierarchical clustering defined by the given linkage
matrix.

We make use of the Ward variance minimization algorithm
Equation 7 to compute the distance between clusters. The
distance between a newly formed cluster u, which consists
of clusters s and t, and another cluster v is calculated as:

d(u, v) =

√
|v|+ |s|

L
d(v, s)2 +

|v|+ |t|
L

d(v, t)2 − |v|
L
d(s, t)2

(7)
where L = |v|+ |s|+ |t|.



Fig. 9: Centroids of the calibration squares in the unified
coordinate system. Colour and number represent the estimated
unique grouping of the detections.

Fig. 10: Centroids of the detected pears in the unified co-
ordinate system. Colour and number represent the estimated
unique cluster IDs of the detections. Figure is not to scale.

Figure 9 shows how the application of the agglomerative
clustering groups the detections into assumed unique objects.
Due to the cumulative error in the calculation of Tn→0, the
grouping is not perfect.

Estimating the total number of fruit on a single side of a
row of trees within the orchard is then just a case of counting
the total number of unique detections for a video of that row.

B. Results

Despite the cumulative error in the calculation of Tn→0,
Figure 10 shows that we have largely been successful in
grouping the detections of pears in one of the rows of trees
into unique pears.

†We do not have a ground truth total count for the unique
pears in each of these rows, however each row should have
approximately 15000 pears per row. Given that we only image
a single side of the row per video, we can assume that we will
only see approximately half of the pears. Thus we expect to
see approximately 7500 pears on each side of each row.

VIII. FRUIT SIZING

A. Method

In order to determine the size of a fruit we can make
use of the segmentation mask provided by the spatial-spectral
segmentation algorithm and the point cloud generated by
DAv2.

By masking the point cloud with the segmentation mask of
a detected fruit, we can then estimate the height and width

by taking the four points within the mask which are furthest
left, right up and down in the imaging plane and computing
width = right− left and height = up− down.

This method does not account for the rotation of the fruit
around the Z axis (orthogonal to the imaging plane) but it is
easy to compute and most pears grow approximately vertically
due to the increase in mass in the lower half of the fruit and
apples are approximately spheres, so their rotation does not
matter.

1) Occlusion: One of the main challenges with estimating
the size of a detected object is occlusion. If an obstacle, such
as a leaf, partially blocks the view of the object from the
camera, then its measured extent will not be correct.

To try and counter this effect, we make use of an aspect ratio
threshold for the pears. Pears are approximately twice as tall
as they are wide, thus any detected pear which does not match
this aspect threshold is likely to be either a False-Positve or
an Occluded detection.

We make use of an aspect ratio threshold Equation 8
function to filter out the detections which are likely to be
of occluded pears. I.e. a detection is assumed to be a partial
detection if the height is less than 1.7 times the width of the
detection.

Fulldetection =

{
True if H >= 1.7W

False else
(8)

B. Results

Table VI shows the distribution of pear sizes measured
for the sides of the tree rows tested. Whilst the mean sizes
are reasonable, there is a large standard deviation on the
measurement. This is due to both error in the measurement
system, from the calibration method as well as DAv2 itself,
as well as the inclusion of obviously under and over sized
detections into the calculation.

Pears have an average size of (7.62cm, 11.43cm) [47]. We
use a threshold of 33% on either side of these values to define
pears which are of the expected size.

The largest minority of detected pears are undersized. This
could point to error in the size estimation method, but it
could also be due to incorrect selection of the sizing bands.
The expected pear size was scrapped from the web and isn’t
necessarily for the same variety of pears being imaged and a
threshold of 33% was some what arbitrarily chosen.

In future, we will need to gather ground truth sizing results
to compare against. At the very least, these should include the
mean and standard deviation of sizes for each row of pears.
We could also make use of the size grading thresholds used
by farmers, but these are not known at the time of writing.

Figure 11 shows the distribution of pear sizes measured for
each of the rows. All rows are largely normally distributed
for both the width and length of pears as is to be expected.
However, there are clearly some outliers in the detections,
with some detections clearly being too small to be correct and
others which are far too large. The very small detections are
likely to be of occluded pears. The approach for filtering out



Block ID Side Total Detections Total Unique Detections Estimated Counting Accuracy †
7-157 Left 2616 1418 18.91%
7-157 Right 6589 2725 36.33%
7-160 Left 7038 2914 38.85%
7-160 Right 19376 3694 49.25%

Combined - 35619 10751 35.84%

TABLE V: Pear detection statistics by block ID and side of row

Block ID Side
Size Distribution (%)

Average Width (cm) Average Length (cm)W < 5.1cm 5.1cm ≤ W < 10.2cm W > 10.2cm
L < 7.6cm 7.6cm ≤ L < 15.2cm L > 15.2cm

157 Left 56.91% 28.18% 18.78% 4.88 ± 2.04 10.75 ± 4.33
157 Right 44.01% 35.33% 23.55% 5.54 ± 1.99 11.94 ± 3.98

7-160 Left 62.57% 27.19% 12.10% 4.68 ± 1.89 10.09 ± 4.05
7-160 Right 13.11% 54.87% 33.71% 6.88 ± 1.56 14.04 ± 2.96

Combined - 41.59% 38.08% 22.64% 5.62 ± 2.05 11.88 ± 4.08

TABLE VI: Pear Size Distribution by Block ID and Side of Row

partial detections is very naive and does not take into account
the absolute size of the detected pears, only caring for the
ratio of height to width. The exceptionally large detections
may come from poor segmentation mask generation as seen in
Figure 6d where False Positive spectral detections have led to
a non-pear image segment (a stick) being classified as a pear.
Minimum object dimensions may help remove FP detections
like these, but the best solution will be further improvements
of the spatial-spectral detection model.

IX. CONCLUSION

We have presented a dataset, benchmarking framework and
system for leveraging hyperspectral images for the purpose of
detecting, segmenting, counting and sizing fruit in an orchard.

The dataset (livingoptics.com/huggingface) is made public
in the hopes that others will develop their own hyperspectral
algorithms and drive the state-of-the-art forward for hyper-
spectral detection and segmentation.

The results from combining a spectral classification algo-
rithm with an RGB segmentation algorithm are promising and
demonstrate the value of hyperspectral data in the challenging
domain of real-world agriculture. Our proposed method, 1D-
ConvNet + SAM2 combination, outperformed the RGB only
method (YOLOv8s). The main improvement comes in the
form of a nearly 25% improvement in Recall. YOLOv8s
struggled to detect more than half of all fruit due to relying
solely on shape and the minimal colour information available
in RGB images. Given the dataset contains high levels of
occlusion, shadowing and motion blur this information is
likely to be insufficient in most instances. In contrast, the
Spatial-Spectral approach allows for the detection of more
than 70% of all fruit. Due to the spectral detection being a
point-wise algorithm, only a minimal amount of a fruit needs
to be un-occluded for it to be spectrally detected. From there,
any spatial-segment with a sufficient proportion of spectral
detections within it can be assigned a class. This means that
partially occluded fruit which may not have sufficient shape
information for YOLOv8s to detect and segment can still be
detected and segmented.

On top of the fruit detections, we have developed a two stage
process for 1) uniquely tracking each individual detected fruit
across a video and then 2) estimating the size of those unique
detections. This highlights how a spatial-spectral component
can replace a spatial (RGB) only component in a complex
computer vision workflow and how the improved performance
of the spatial-spectral component can benefit downstream
tasks.

X. FUTURE WORK

This study highlights the potential for enhancing spatial-
spectral detection, segmentation, counting and sizing method-
ologies in HSI systems. However, several areas for improve-
ment have been identified, which can serve as a foundation
for future work.

A. Spectral detection improvements

Future efforts will focus on refining the spectral detection
algorithm to enhance accuracy and robustness. A broader
architectural and hyperparameter search is a priority, aiming
to identify optimal model structures that balance complexity
and performance. Utilising Bayesian Optimised Hyperband
[50] for this purpose would reduce the time taken for this by
eliminating poor performing areas of the search space earlier in
the search process. Exploring alternative loss functions tailored
for hyperspectral data will also be essential, particularly to
address imbalanced datasets and improve convergence. En-
hancing data balancing strategies, such as employing advanced
oversampling or synthetic data generation methods, could
improve model reliability. Increasing the amount of training
data is another key avenue for improving generalisation and
reducing overfitting, potentially through augmentation or the
inclusion of more real-world data. Additionally, postprocessing
techniques could be developed to refine detections and mitigate
False-Positves and negatives.

B. Object segmentation

Currently, segmentation relies on off-the-shelf third-party
models. Fine-tuning these models on domain-specific data
is a logical next step to improve accuracy and efficiency.



(a) Block 157, left (b) Block 157, right

(c) Block 160, left (d) Block 160, right

(e) Combined

Fig. 11: Distribution of measured pear sizes. The top subplot in each sub-figure (a - e) is for the pear width (X), the bottom
for the pear length (Y).

However, long-term goals include developing a custom RGB
segmentation algorithm optimised for the specific requirements

of HSI tasks. This bespoke model would prioritise both
speed and accuracy, leveraging innovations in deep learning



to outperform generic solutions.
Additionally, a joint spectral and RGB encoder could be

developed to jointly leverage both modalities directly, rather
than in the two stage approach we have taken in this work
where the spectral and RGB data are treated separately.

C. Monocular depth

Depth estimation also relies on an off-the-shelf third-party
monocular depth model. Fine-tuning this system to align
with the dataset’s characteristics could enhance performance.
In addition, designing a custom monocular depth estimation
algorithm tailored to HSI applications would provide better
control over accuracy and computational efficiency. As with
the segmentation algorithm, utilising the spectral data directly
in a monocular depth algorithm may also offer improvements
in performance by providing rich key points around which to
build feature embeddings.

Another critical area is improving the depth calibration pro-
cess to ensure precise unit conversions, as calibration inaccu-
racies can lead to significant measurement errors. Automating
this calibration process and rigorously testing it across various
scenarios will be essential for robust system deployment.

D. Tracking

Tracking improvements will focus on unifying the coordi-
nate system used in hyperspectral analysis. Optimisation of
the hyperparameters used in Iterative Closest Point (ICP) will
improve the alignment of repeat detections across multiple
frames, providing more accurate object tracking.

For faster and more efficient processing, replacing ICP with
a non-point cloud based approach, such as Scale-Invariant
Feature Transform combined with the computation of a ho-
mography, could offer significant speed-ups.

One major draw back of the current tracking algorithm is
that it assumes a static scene and a moving camera. Further
work would be needed to account for object movement within
the scene.

E. Sizing

The current sizing approach, based on bounding box dimen-
sions, can be further refined to account for object rotation.
Future work will include developing algorithms to determine
the maximum length and width of objects by analysing the
mask, irrespective of orientation. This approach will ensure
that size estimates are more precise and less affected by object
positioning.

Capturing ground truth fruit sizes - or at least mean and
standard deviation values, would allow for a more empirical
analysis of the sizing results

F. Yield estimation

Getting ground truth counts of the unique fruit would
improve the quality of the analysis in this work.

Furthermore, by combining the counts from the tracking
system with the sizing data an estimate of the total volume of
fruit can be made. By adding an additional layer of spectral
metrics to estimate the quality and health of the detected

fruit a more granular yield estimate could be made. For
example, counts of healthy, damaged or diseased fruit could
be generated.

XI. APPENDIX A

Preliminary experiments with the Random Forest classifier
demonstrated the necessity of forming a background class in
the training data. This is due to two factors:

1) Random forests must assign a class to all inputs - leading
to background spectra being assigned foreground classes
if no background class is utilised.

2) The subtle difference between foreground class spectra
and background spectra mean that the confidence score
of the random forest is not wholly reliable for dis-
tinguishing between some foreground and background
spectra. Therefore we cannot easily suppress background
spectra classified as foreground classes.

The background class is formed of all spectra which do not
lie inside a mask from the foreground labelling.

The background class contains many more times the number
of spectra that are found in all foreground classes combined
- for the training set 1,855,755 background spectra vs 51,285
foreground spectra. This biases both any algorithm trained
on the data to preferentially select the background class over
all other classes if no attempt is made to either balance the
training data or the training loss.

In the case of the random forest, we have no notion of
epochs of training or data batching, therefore if we want to
make use of all of the training data, we cannot easily remove
background spectra to balance the number of foreground vs
background spectra.

Instead we have two possible directions to take to achieve
a balanced training set:

1) Class weighting
2) Foreground data duplication

1) Class weighting: We can provide a set of weights to the
random forest training algorithm to reduce the importance of
correctly classifying the background class vs the foreground
class. These weights are calculated as being inversely pro-
portional to the frequency of the class. This can be done at
either the dataset level or at the subsample level and is directly
supported in Scikit-learn by passing either ‘None’, ‘balanced’
or ‘balanced subsample’ to the ‘class weight’ argument of the
random forest.

We can take a similar approach when training the 1D
convolutional neural network, providing a set of class weights
which can be used to adjust the loss for each class so as to
attempt to avoid biasing the model towards the background
class. We only calculate the weighting once, for the entire
dataset, rather than on a batch by batch basis as this would
require reinitialising the loss function on each batch which
would be prohibitively slow during training. Though such an
approach might yield better results by re-balancing the loss
each batch.



wc =
N

nc
(9)

In Equation 9, the weighting associated with a class, wc ∈ W ,
is inversely proportional to the frequency of class c. N is
the total number of spectra in the training data and nc is the
number of spectra of class c in the training data. We then
normalise the weights by the maximum, Wnorm = W

max(W ) .
2) Foreground data duplication: We could choose to du-

plicate a random sample of the foreground spectra so that the
number of background and foreground spectra match as well
as providing balancing across classes.

However, without a data augmentation method, this dupli-
cation isn’t helpful for training the random forest as duplicated
spectra will be classified by the same nodes, without the need
for additional nodes to distinguish them. As spectral data
augmentation is beyond the scope of this work, we do not
explore this approach for the random forest.

For the 1D convolutional classifier, directly duplicating
the data is a more reasonable approach, even without data
augmentation as this simply biases the loss away from the
background class by providing more frequent weight updates
calculated from the foreground class losses.

There are two ways in which we can duplicate the fore-
ground data - 1) match the total number of foreground spectra
to the total number of background spectra 2) match the number
of spectra in each foreground class to the number of spectra
in the background class.

Df = duplicate(Df , Nb) (10)

Equation 10 uses a function called duplicate which will
create copies of Df , the foreground data, so that Nf , the
number of foreground spectra matches Nb the number of
background spectra.

Dfc = duplicate(Dfc,Nb) (11)

Equation 11 uses the duplicate function to match the number
of spectra in class c to the number of background spectra Nb.
By applying this method to all c ∈ C, all foreground classes
will have the same number of samples as the background class.

3) Background data sampling: A third option for dataset
balancing is available to the 1D convolutional classifier -
background data sampling.

As the convolutional classifier is trained for a number of
epochs, we can randomly select a sample of the background
data at the start of each epoch such that the training set for each
consists of N foreground spectra and N background spectra.

Alternatively, we could select the number of background
spectra to be equal to the number of spectra in the largest
foreground class.

Background data sampling is a good approach to solving
the data imbalance problem as it still allows us to leverage all
of the background data whilst ensuring that the average loss
per epoch is not overly biased towards the background class.

REFERENCES

[1] Mohamed Hisham Aref, Sanzhar Korganbayev, Ibrahim H Aboughaleb,
Abdallah Abdelkader Hussein, Mohamed A Abbass, Ramy Abdlaty,
Yasser M Sabry, Paola Saccomandi, and Abou-Bakr M Youssef. Custom
hyperspectral imaging system reveals unique spectral signatures of heart,
kidney, and liver tissues. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, 305:123363, 2024.

[2] Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. Deep
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